Ipsos Poll Conducted for Reuters

Core Political Daily Tracker

11.07.2016
These are findings from an Ipsos poll conducted for Reuters.

For the survey, a sample of 3,198 Americans including 1,463 Democrats, 1,086 Republicans, 370 Independents were interviewed online.

For the survey, 2,756 Registered voters and 2,195 Likely voters were interviewed online.

The poll was conducted for the period of November 2-6, 2016.
The precision of the Reuters/Ipsos online polls is measured using a credibility interval.

In this case, the poll has a credibility interval of plus or minus the following percentage points:

- 2.0 for all adults
- 2.9 for Democrats
- 3.4 for Republicans
- 5.8 for Independents
- 2.1 for Registered voters
- 2.4 for Likely voters

For more information about credibility intervals, please see the appendix.
Core Political Data

• The data were weighted to the U.S. current population data by:
 – Gender
 – Age
 – Education
 – Ethnicity

• Statistical margins of error are not applicable to online polls.
• All sample surveys and polls may be subject to other sources of error, including, but not limited to coverage error and measurement error.
• Figures marked by an asterisk (*) indicate a percentage value of greater than zero but less than one half of one per cent.
• Where figures do not sum to 100, this is due to the effects of rounding.

• To see more information on this and other Reuters/Ipsos polls, please visit: http://polling.reuters.com/
If the 2016 presidential election were being held today and the candidates were as below, for whom would you vote? *(Asked of likely voters, n=2,195)*

<table>
<thead>
<tr>
<th></th>
<th>Likely Voters (LV)</th>
<th>Democrats (LV)</th>
<th>Republicans (LV)</th>
<th>Independents (LV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillary Clinton (Democrat)</td>
<td>44%</td>
<td>84%</td>
<td>6%</td>
<td>29%</td>
</tr>
<tr>
<td>Donald Trump (Republican)</td>
<td>39%</td>
<td>7%</td>
<td>81%</td>
<td>24%</td>
</tr>
<tr>
<td>Other</td>
<td>9%</td>
<td>5%</td>
<td>7%</td>
<td>28%</td>
</tr>
<tr>
<td>Wouldn’t Vote</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>7%</td>
</tr>
<tr>
<td>Don’t know / Refused</td>
<td>6%</td>
<td>4%</td>
<td>6%</td>
<td>12%</td>
</tr>
</tbody>
</table>
If the 2016 presidential election were being held today and the candidates were as below, for whom would you vote? *(Asked of likely voters, n=2,195)*

- 44% Hillary Clinton
- 39% Donald Trump
- 18% DK/Other

© 2016 Ipsos
If the 2016 presidential election were being held today and the candidates were as below, for whom would you vote? *(Asked of likely voters, n=2,195)*

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Likely Voters (LV)</th>
<th>Democrats (LV)</th>
<th>Republicans (LV)</th>
<th>Independents (LV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillary Clinton (Democrat)</td>
<td>42%</td>
<td>81%</td>
<td>6%</td>
<td>28%</td>
</tr>
<tr>
<td>Donald Trump (Republican)</td>
<td>39%</td>
<td>7%</td>
<td>81%</td>
<td>24%</td>
</tr>
<tr>
<td>Gary Johnson (Libertarian)</td>
<td>6%</td>
<td>4%</td>
<td>5%</td>
<td>15%</td>
</tr>
<tr>
<td>Jill Stein (Green)</td>
<td>3%</td>
<td>2%</td>
<td>1%</td>
<td>8%</td>
</tr>
<tr>
<td>Other</td>
<td>3%</td>
<td>1%</td>
<td>2%</td>
<td>8%</td>
</tr>
<tr>
<td>Wouldn’t Vote</td>
<td>2%</td>
<td>1%</td>
<td>1%</td>
<td>6%</td>
</tr>
<tr>
<td>Don’t know / Refused</td>
<td>5%</td>
<td>3%</td>
<td>4%</td>
<td>11%</td>
</tr>
</tbody>
</table>
REGISTERED VOTERS

General Election Candidate Favorability

Would you say you are generally favorable or unfavorable towards these public figures?

DONALD TRUMP

- 43% Favorable
- 57% Unfavorable

HILLARY CLINTON

- 49% Favorable
- 51% Unfavorable
Political Identity

- Strong Democrat: 17%
- Moderate Democrat: 19%
- Lean Democrat: 6%
- Lean Republican: 7%
- Moderate Republican: 14%
- Strong Republican: 12%
- Independent: 19%
- None of these: 2%
- DK: 2%

Party ID
- Democrat: 37%
- Republican: 27%

Party ID w/ Lean
- Democrat: 43%
- Republican: 34%
- Independent: 19%
- None/DK: 4%

All Adults: n= 3,198
How to Calculate Bayesian Credibility Intervals

The calculation of credibility intervals assumes that Y has a binomial distribution conditioned on the parameter θ, i.e., $Y|\theta \sim \text{bin}(n, \theta)$, where n is the size of our sample. In this setting, Y counts the number of “yes” or “1”, observed in the sample, so that the sample mean (\bar{Y}) is a natural estimate of the true population proportion θ. This model is often called the likelihood function, and it is a standard concept in both the Bayesian and the classical framework. The Bayesian statistics combines both the prior distribution and the likelihood function to create a posterior distribution.

The posterior distribution represents our opinion about which are the plausible values for θ adjusted after observing the sample data. In reality, the posterior distribution is one’s knowledge base updated using the latest survey information. For the prior and likelihood functions specified here, the posterior distribution is also a beta distribution ($\pi(\theta|y) \sim \beta(y+a, n-y+b)$), but with updated hyper-parameters.

Our credibility interval for θ is based on this posterior distribution. As mentioned above, these intervals represent our belief about which are the most plausible values for θ given our updated knowledge base. There are different ways to calculate these intervals based on $\pi(\theta|y)$. Since we want only one measure of precision for all variables in the survey, analogous to what is done within the classical framework, we will compute the largest possible credibility interval for any observed sample. The worst case occurs when we assume that $a=1$ and $b=1$ and $y=n/2$. Using a simple approximation of the posterior by the normal distribution, the 95% credibility interval is given by, approximately:

$$\bar{Y} \pm \frac{1}{\sqrt{n}}$$
APPENDIX

How to Calculate Bayesian Credibility Intervals

FOR THIS POLL

The Bayesian credibility interval was adjusted using standard weighting design effect $1+L=1.3$ to account for complex weighting.

Examples of credibility intervals for different base sizes are below:

<table>
<thead>
<tr>
<th>SAMPLE SIZE</th>
<th>CREDIBILITY INTERVALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>2.5</td>
</tr>
<tr>
<td>1,500</td>
<td>2.9</td>
</tr>
<tr>
<td>1,000</td>
<td>3.5</td>
</tr>
<tr>
<td>750</td>
<td>4.1</td>
</tr>
<tr>
<td>500</td>
<td>5.0</td>
</tr>
<tr>
<td>350</td>
<td>6.0</td>
</tr>
<tr>
<td>200</td>
<td>7.9</td>
</tr>
<tr>
<td>100</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Ipsos does not publish data for base sizes (sample sizes) below 100.

ABOUT IPSOS

Ipsos ranks third in the global research industry. With a strong presence in 87 countries, Ipsos employs more than 16,000 people and has the ability to conduct research programs in more than 100 countries. Founded in France in 1975, Ipsos is controlled and managed by research professionals. They have built a solid Group around a multi-specialist positioning – Media and advertising research; Marketing research; Client and employee relationship management; Opinion & social research; Mobile, Online, Offline data collection and delivery.

Ipsos is listed on Eurolist – NYSE – Euronext. The company is part of the SBF 120 and the Mid-60 index and is eligible for the Deferred Settlement Service (SRD).

ISIN code FR0000073298, Reuters ISOS.PA, Bloomberg IPS:FP

www.ipsos.com

GAME CHANGERS

At Ipsos we are passionately curious about people, markets, brands and society. We deliver information and analysis that makes our complex world easier and faster to navigate and inspires our clients to make smarter decisions.

We believe that our work is important. Security, simplicity, speed and substance applies to everything we do.

Through specialisation, we offer our clients a unique depth of knowledge and expertise. Learning from different experiences gives us perspective and inspires us to boldly call things into question, to be creative.

By nurturing a culture of collaboration and curiosity, we attract the highest calibre of people who have the ability and desire to influence and shape the future.

“GAME CHANGERS” – our tagline – summarises our ambition.